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Recent advances in pore-scale models for drying of porous media
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Abstract

This paper presents a review of the recent advances in pore-scale modelling of drying in capillary porous media. The development of
pore network models in drying has been first motivated by several fundamental features of drying that cannot be fully explained within the
framework of continuum models. These features include the dry patch phenomenon and the constant drying rate period. A second source of
motivation has been the advances made in pore-scale modelling of immiscible displacements in porous media and the increasing conviction
that concepts developed in this area could be utilised to model drying. These concepts are recalled. We describe how they have been used
for developing a pore network model of drying driven by mass transfer. A review of the main results is made, including pattern formation,
drying rates and some recent results regarding drying of a porous medium containing a binary mixture and the influence of heat transfer. The
use of network models for computing effective transport properties is discussed. Open problems are discussed. © 2002 Elsevier Science
B.V. All rights reserved.
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1. Introduction

The development of models for drying of porous media
has been the subject of many studies, see for instance [1–3].
Motivations are numerous and varied. This is due to the fact
that there exists a great variety of drying processes and that
drying can be considered at different scales (typically from
the pore-scale to the dryer scale). For a given drying pro-
cess, one can reasonably put forward that a model relevant
at a given scale should be consistent with the models de-
scribing drying at smaller scales. Hence, modelling at the
dryer scale can be envisioned as an upscaling problem. This
somewhat ideal vision implies that the modelling should be
initiated at the first scale of interest, typically the pore-scale,
and that models at larger and larger scales are successively
developed up to the dryer scale. Naturally, design of dryers
is far from being the sole motivation for developing models
at the product scale, see [1,4]. In any case, a correct mod-
elling of drying at the product scale is of interest. The nature
of the product is also a great source of diversity, from inert
materials to foodstuffs. One possible classification is to con-
sider how water is fixed in the product. Above a concept of
pore was implicitly assumed. Furthermore, we assume that
water can be fixed only within the pores, i.e. water fixed in
the solid matrix, if any, is not considered. Traditionally, two
modes of fixation are considered: adsorption and capillarity
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[4–6]. Materials in which a large amount of water can be
fixed by adsorption are termed hygroscopic materials while
materials in which water is essentially fixed by capillarity
form the capillary porous media. In this paper, we are pri-
marily concerned with rigid capillary materials. This special
class may be thought as a rather “academic” class, whose
archetypal examples are the beds of glass beads or sand [7].
The standpoint which is adopted here is that drying must be
at least understood for this class of “simple” materials before
considering more involved cases. The main transport mech-
anisms controlling drying in capillary materials are known
since the works of Ceaglske and Hougen [7] and Krisher [8].
Capillarity is known to play a key role. Others forces affect-
ing liquid transport are gravity and viscous forces while dif-
fusion is the main mechanism in the gas phase sufficiently
below the boiling temperature of water (in this paper, we
will restrict ourselves to situations for which temperatures
are sufficiently lower than the boiling temperature for total
pressure gradients in the gas phase to be negligible).

Another fundamental aspect of drying is the intimate role
that the transport of energy may play. Although this is a very
important aspect in many drying processes (it is well known
that drying is one of the most energy-consuming processes
in industry), it may be disregarded in a first step when a
fundamental understanding of drying is sought. This implies
to consider situations where drying rates are sufficiently low
for not imparting significant temperature gradients within
the materials. This type of drying is termed “slow drying”.
Most of this paper is concerned with slow drying, but heat
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transfer aspects will be briefly considered. If one restricts
oneself to the simplest situation, a single component liquid
must be assumed. However, insights on the evaporation of
a binary liquid will be given.

As far as modelling is concerned, first models including
capillary effects and vapour transport were developed in the
1950s [9,10]. Although many papers have been published
afterwards (see for instance [11]), no significant change
in terms of model formulation has been introduced. These
models were developed according to phenomenological ap-
proaches that consider the porous medium as a fictitious
continuum. The effects of the underlying physical phenom-
ena are lumped into effective transport coefficients that must
be determined through specific experiments, see Crausse
et al. [12] among others. This continuum approach has been
placed on a firmer basis through the works of Whitaker
[2,13], who essentially derived the same equations as Philip
and de Vries or Luikov by a volume averaging technique.
However, this later approach rests upon assumptions regard-
ing the phase distribution within the averaging volume that
are in fact not verified in certain situations of drying. One
interesting feature of the volume averaging technique as de-
veloped by Whitaker [13], is, however, the possibility of de-
termining the effective parameters through the solution of
closure problems defined over regions representative of the
pore microstructure. In this way, a fundamental aspect of
the problem which is the disordered nature of the porous
microstructure could be analysed. Finally, the motivations
for developing models that permit to analyse the influence
of the porous microstructure are (at least) twofold. One is
the computation of the effective parameters at the scale of a
representative volume of the microstructure. A second one
is to analyse drying at the scale of the product without as-
suming a priori the existence of the representative elemen-
tary volume that is associated with the continuum approach.
Pore network models have been used in both cases. One
of their essential aspects is that they can take into account
important features of the microstructure. In fact, the use of
pore network models for describing drying of porous media
is relatively recent. To the best of our knowledge, the first
works in which a pore network model is used in the con-
text of drying modelling are those of Daian and Saliba [14]
and Nowicki et al. [15]. The motivation was essentially a
better understanding of the behaviour of the effective trans-
port parameters as a function of liquid saturation. At the

Fig. 1. Modelling of pore space by a network of pores (sites) and throats (bonds).

product scale, the studies of the patterns that form during
drying and their influence on the drying rates through pore
network models are still more recent and began with the
drying model proposed by Prat [16]. Since then, two groups
have been active in this field, Yortsos and co-workers, see
[17], and our group at IMFT, see [18] and references therein.
In the present paper, we review the main results obtained
so far. In the next section, we begin with the works at the
representative elementary volume (REV) scale. The results
pertinent at the product scale are discussed in the section
that follows. Heat transfer aspects and evaporation of binary
liquid are discussed afterwards. Finally, works in progress
and some open problems are discussed.

2. Representation of pore space as a pore network

Pore network models are based on a network representa-
tion of the porous structure. A sketch of the microstructure
of an unconsolidated porous medium is shown in Fig. 1. One
can distinguish the pores and the throats. The pores are the
voids of relatively large section. The throats are the segments
having a minimum cross-section between two pores. As de-
picted in Fig. 1, an irregular network is obtained by connect-
ing each pore to its neighbour pores. In this network, each
pore is also characterised by its coordination, i.e. the num-
ber of neighbour pores to which it is connected. Studies are
seldom conducted directly on this network. One option is to
consider the regular network having the same mean coordi-
nation as the irregular one. In fact, some essential properties,
such as the exponents governing certain scaling laws [19] are
independent of the coordination (in physicist language, the
various networks obtained for various mean coordination are
said to belong to the same universality class). This explains
why most of the studies based on numerical simulations of
drying on pore networks were performed on the simplest
regular networks (a square network in two-dimensions and a
simple cubic lattice in three-dimensions). An other essential
ingredient of the network approach is that the width of the
throats is not uniform. These widths are distributed accord-
ing to a given distribution law. This feature is important in re-
lation to capillary and viscous effects. As percolation theory
is often the suitable framework for analysing two-phase im-
miscible displacements governed by capillary effects on net-
works, networks are often described in terms of percolation
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networks [19]. The pores (the nodes of network) correspond
to the “sites” of percolation networks and the throat to the
“bonds”. In this respect, the aforementioned throat (bond)
widths are generally distributed purely randomly. The influ-
ence of bond width correlations has not yet been explored in
the context of drying. To conclude this section it is important
to note that the values of the exponents of the percolation the-
ory are different in two-dimensions and in three-dimensions.
This difference reflects differences in connectivity of the
pore space. As a result, certain phenomena can only cap-
tured by simulations on three-dimensional networks.

3. Pores network models at the REV scale

In this section, the existence of a REV is assumed.
Accordingly the continuum approach is assumed to be valid.
The pore space within the REV is mapped onto a regular
network. Pore network models are then used to compute
the effective parameters. Examples of such an approach are
presented in [14,15]. Both studies were restricted to isother-
mal conditions. Cubic pore networks were considered by
Daian and Saliba. The distributions of pore volumes and
throats widths were obtained from data deduced from sorp-
tion and mercury intrusion experiments. Two-dimensional
square networks were considered by Nowicki et al. The
throat sizes were drawn from a uniform distribution. While
Daian and Saliba determined the isothermal mass diffusiv-
ity coefficient as a function of saturation, Nowicki et al.
determined the relative permeability to liquid, the capillary
pressure and effective diffusivity of vapour as functions of
liquid saturation and drying history. Daian and Saliba found
a reasonable agreement between the predicted and measured
diffusivities. The results of Nowicki et al. were essentially
illustrative and no comparison with measured macroscopic
parameters were presented. The general features of the
modelling are, however, essentially identical in both works.
In what follows, the work of Nowicki et al., is discussed
in more detail. As in most continuum models of drying, a
liquid phase continuity equation of the following form was
assumed:

ε
∂S

∂t
+ ∇ · ql = − ṁ

ρl
(1)

where ε is the porosity, S the liquid saturation, ql the super-
ficial volumetric flux of liquid, ṁ the mass rate of drying
per unit volume and ρl the liquid density. ql is related to the
pressure gradient in the liquid by (generalised Darcy’s law),

ql = −kkrl

µ
∇pl (2)

where k is the permeability of the porous medium, krl the
relative permeability, which is a function of S and µ the
liquid viscosity. Note that gravity effects are neglected
here. Because of surface tension acting in curved menisci,

the pressure pg in the gas phase is greater than the pressure
in the liquid,

pg − pl = pc (3)

where pc is the capillary pressure. Note that the liquid is wet-
ting. In slow drying, pg is approximately uniform. Therefore,

∇pg ≈ 0, ∇pl ≈ −∇pc (4)

The transport of vapour in the gas phase is assumed to be
due to diffusion only. The continuity equation of the vapour,
assumed to behave as an ideal gas, can be expressed as
(under isothermal conditions)

ε
∂pv

∂t
= ∇ · (Deff∇pv) + ṁ (5)

where pv is the vapour partial pressure and Deff the vapour
effective diffusivity.

The objective of pore network models at the REV scale
is essentially to compute parameters such as k, krl, pc, Deff
as a function of S (in the limit of slow rates of drying).
Interestingly, however, Nowicki et al. showed that these
parameters also depend on the drying rate. This is not
surprising since variations of drying rates affect the phase
distributions through the competition between capillary
and viscous forces (see next section). However, impos-
ing fast drying rates may be thought as inconsistent with
the isothermal condition assumed by Nowicki et al. In
any case, two main aspects can be distinguished: (i) the
computation of the above parameters for a given phase
distribution and (ii) the computation of the liquid and gas
phase distribution within the network (i.e. the positions of
meniscii within the network). Only the main concepts are
presented in what follows. The unknowns are the location
and the radius of curvature of menisci, the liquid pres-
sure at each meniscus and in each liquid-filled pores, the
partial pressure of vapour in each gas-filled pores. These
unknowns are determined by solving the equations ob-
tained by expressing the mass balance in each pore and at
each meniscus. The volumetric flow rate qk between ad-
jacent liquid filled pores i and j is expressed as a function
of the pressure difference pi − pj between pores i and j
by

qk = gk

µ
(pi − pj ) (6)

where gk is the conductance of the bond connecting pores
i and j. The expression of the conductance depends on
the shape of the bond and is deduced from the study of
Stokes flow through the bond. For instance, if the bond is
tube-like,

gk = πr4
k

8Lk

(7)

where Lk is the length of the bond and rk the throat
radius.
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The mass balance in each liquid filled pore is expressed
by Kirchoff’s current law,∑
k

qk = 0 (8)

where the sum is over the flow rates through the k bonds
that connect to the pore.

In the gas phase, the elementary transport of vapour by
diffusion through a bond connecting two gas-filled pores i
and j is expressed by, see for instance [20],

um = πr2
m

paM

RTLm

D ln

[
pa − pvi

pa − pvj

]
(9)

where M is the molecular weight of vapour, R the universal
gas constant and T the isothermal drying temperature. D is
the molecular diffusion coefficient of vapour through air, pa
the ambient gas pressure, pvi (respectively, pvj ) the partial
pressure of vapour in pore i (respectively, j).

The mass balance in each gas-filled pore is expressed by

dmi

dt
=

∑
k

wk +
∑
m

um (10)

where mi is the vapour mass in pore i, wk the evaporation
rate over an evaporating meniscus in adjoining bond k. It is
expressed as

wk = πr2
k

paM

RTLk

D ln

[
pa − pvi

pa − pvek

]
(11)

where Lk is the distance between the meniscus and pore i,
pvek the equilibrium vapour partial pressure at the meniscus,
which is related to the meniscus radius of curvature Rk by
the Kelvin equation,

pvek = pvs exp

(
− 2γM

ρlR TRk

)
(12)

where γ is the surface tension.
The mass balance in each bond containing a meniscus is

expressed by

dmk

dt
= ρlqk − wk (13)

while the pressure jump at the meniscus is classically
expressed by the Yound–Laplace equation,

pa − plk = 2γ

Rk

(14)

where the liquid is assumed perfectly wetting.These equa-
tions are completed by the ideal gas law and an equation
relating the radius of curvature to the volume of liquid in
a bond where a meniscus is located. This equation depends
on the shape of the bond. Biconical bonds were assumed in
[15].

The above set of equations was solved numerically by
Nowicki et al. for the following initial and boundary con-
ditions. The pore network was completely filled with liquid
initially. Periodic boundary conditions were imposed on

the sides. The bottom was open to ambient pressure and no
evaporation was assumed. Drying took place from top sur-
face. The evaporation flux at top surface was expressed by

wk = km(pvek − pv∞) (15)

where km is a mass transfer coefficient and pv∞ the vapour
partial pressure in the surrounding gas.

The macroscopic parameters are obtained as follows over
the network or a sub-region of network (sampling volume
in Nowicki et al. terminology). The total liquid and vapour
flux through the top surface of the considered region was
calculated. The arithmetic mean of the capillary pressure
(and the vapour partial pressure) along the top and bottom
surfaces of the region were determined. The relative perme-
ability and the effective diffusivity were calculated from the
following finite difference approximations

krl = −µ
ql

k

L

�pc
, Deff = −µ

RTρgqg

M

L

�pv
(16)

where L is the length of the considered region, �pc the
capillary pressure difference across the region (difference
between the top and bottom capillary pressure arithmetic
means) and �pv the vapour partial pressure difference across
the region.

As the saturation S in the network and/or the sub-region
can be evaluated at each invasion step, the evolution of
krl, Deff , and the mean capillary pressure can be plotted
as a function of S. Examples of such plots are presented
by Nowicki et al. The computations were performed over
30 × 30 networks, which is a relatively small size. It
would be interesting to repeat this type of calculation over
three-dimensional networks of larger size.

4. Pore network models at the product scale

As mentioned in the introduction, the objectives of a
pore network at the product scale are twofold. One is
to predict the phase distribution during drying. A second is
to study the evolution of the drying rates. Naturally, the two
objectives are not independent since the drying rates are
intimately associated with the evolution of the phase dis-
tribution within the sample. To the best of our knowledge,
the first pore network model of drying at the product scale
is the one proposed by Prat [16]. This model, which will
be recalled below, combines invasion percolation concepts
and computation of the diffusive transport of vapour in the
gas phase according to a discrete approach similar to that
discussed in the previous section (Eqs. (9) and (10)).

4.1. Invasion percolation

Invasion percolation is a dynamic percolation process
introduced to model the slow immiscible displacement of
a wetting fluid by a non-wetting one in a porous medium
[21,22]. Drying and drainage present obvious analogies
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Both of them are characterised by the movement of meniscii
through the porous medium and progressive invasion of
the medium by the non-wetting fluid (the gas in drying).
Naturally, drying is also different from drainage owing
to the additional effect of mass transfer in the gas phase,
which actually drives the process. These differences are
discussed below. The analogy with drainage was first evi-
denced by Shaw [23] in an experiment performed with a
quasi two-dimensional packing of very small particles. He
observed invasion fronts that strongly resembled drainage
invasion percolation front (due to the uncertainty in the
data, the formal analogy with a drainage front could not be
demonstrated). From the work of Lenormand et al. [24], it
is known that drainage patterns are controlled (when grav-
ity forces are ignored) by two-dimensionless numbers, the
viscosity ratio of the two fluids and the capillary number
Ca which is the ratio of viscous forces to capillary ones
(the lower the capillary number, the greater the capillary
forces). In (slow) drying, capillary forces are always im-
portant. For this reason, it is of interest to consider first
the “asymptotic” case where capillarity effects dominate.
This case corresponds to invasion percolation patterns in
the phase diagram proposed by Lenormand et al. [24]. The
invasion percolation algorithm is recalled in what follows.
Consider a regular network of pores and bonds. The network
is initially completely filled with liquid. The width of the
bonds is randomly distributed according to a given distribu-
tion law. For simplicity, assume tube-like bond of radius rb.
Assuming a perfectly wetting fluid, the threshold capillary
pressure of a bond is given by (Young–Laplace equation)

pcb = 2γ

rb
(17)

The non-wetting fluid can enter the network through the top
surface of network (entrance surface). The wetting fluid can
escape the network through the bottom surface of network
(exit surface). The fluids cannot escape or enter through the
sides. The stable position of a meniscus is at the entrance of
a bond. The algorithm describing invasion percolation can
be stated as follows:

1. Among all the bonds at the entrance of which a meniscus
is located, select the one which has the lowest threshold
capillary pressure.

2. Invade the bond selected in step 1 together with its adja-
cent pore.

3. End the invasion process when the invading fluid reaches
a pore on the exit surface.

This algorithm describes invasion percolation without
trapping. In fact, when this algorithm is used, regions of
wetting fluid become completely surrounded by the in-
vading non-wetting fluid. Because of the incompressibility
of the wetting fluid, these regions, called “disconnected
clusters”, cannot be invaded. Hence, the algorithm perti-
nent to drainage should incorporate the trapping rule: the
disconnected clusters cannot be invaded, i.e. the interfacial

bonds of disconnected clusters (the bonds of disconnected
clusters at the entrance of which meniscii are located) are
removed from the list of interfacial bonds in step 1. Fig. 2a
shows a typical phase distribution obtained with the inva-
sion percolation algorithm with trapping on a regular square
network. Note the disconnected clusters of various size (the
maximum size is imposed by the size of network). There
are considerable evidences that invasion percolation with
trapping adequately describes slow drainage in a porous
medium, see for instance [25].

4.2. Phase distributions, drying algorithm, influence
of gravity and viscosity effects

The phase distribution of Fig. 2a is to be compared with
the phase distribution (shown in Fig. 2b) obtained with the
drying algorithm proposed by Prat [16]. As can be seen
from Fig. 2a, the striking difference between drying and
drainage is that the disconnected clusters can be invaded in
drying. The drying algorithm used for obtaining the phase
distribution depicted in Fig. 2b, can be described as follows:

1. every cluster present in the network is identified,
2. the bond connected to the already invaded region which

has the lowest threshold capillary pressure is identified
for each cluster,

3. the evaporation flux at the boundary of each cluster is
computed,

4. for each cluster, the mass loss corresponding to the evap-
oration flux determined in step 3 is assigned to the bond
identified in step 2,

5. the bond (as well as the adjacent pore) eventually invaded
is that which is the first to be completely drained among
the bonds selected in step 2,

6. the phase distribution within the network is updated.

In this model, the liquid is a single component liquid. The
gas phase is a binary mixture consisting of the vapour of
the liquid and an inert component. Kelvin effect is ne-
glected. The evaporation flux (step 3) are determined from
the computation of the molar fractions in the vapour phase.
The computational method is similar to that presented in
the previous section, Eqs. (9)–(11), with the additional sim-
plifying assumption of a quasi-steady diffusive transport.
In this simulation, vapour was allowed to escape through
the top edge of network. Zero flux conditions were im-
posed on the three remaining edges. As reported in [26],
comparisons with experiments on etched networks showed
that this model captured the essential features of the phase
distribution evolution in slow drying.

As reported in [27], this model has also been used to
perform simulations of drying on a three-dimensional net-
work. A simple cubic network was considered. Vapour could
escape through one of the surface of network. Numerical
visualisations of the liquid–gas interface within the network
during drying led to distinguish three main stages. In the first
stage the gas preferentially invades the region of the open
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Fig. 2. (a) Phase distribution predicted with the invasion percolation algorithm with trapping in a 100 × 100 network. The liquid phase is in black. The
gas phase is in white. Note the numerous disconnected clusters. (b) Phase distribution predicted with the slow drying pore network model in the same
100 × 100 network as for (a). The liquid phase is in black. The gas phase is in white. Note the occurrence of a dry zone along the open (top) surface
(adapted from [37]).

face. Irregular fractal patterns typical of invasion percolation
were obtained as shown in Fig. 3a. The second stage is char-
acterised by an invasion of the sample which seems statisti-
cally homogeneous and isotropic. A typical visualisation for
this stage is shown in Fig. 3b. The third stage is characterised
by the full drying of the sample through an evaporation pro-
cess sweeping the network from the open to the opposite
surface. A typical visualisation for this stage is shown in
Fig. 3c. Disconnected clusters are clearly visible in Fig. 3c.
This suggests that the liquid phase is in fact distributed in
the form of disconnected clusters when the third stage starts.
Hence, in terms of phase distribution evolution, drying can
be defined as a progressive fragmentation and erosion pro-
cess of the liquid phase. Initially, the liquid phase forms a
single cluster spanning the network. When the third phase
starts, there is no network spanning liquid cluster anymore
but a large numbers of isolated liquid clusters of various size.

The pore network drying model described above takes into
account capillarity only as a force acting on the liquid. It is
well known that viscous forces and gravity forces may also
be important. Incorporating gravity effects in the model is
an easy matter. Taking into account viscous effects is more
involved. In both cases, the idea is to take into account the
variation of the liquid pressure induced either by gravity
effects or by viscosity effects. The method, which was first

proposed by Wilkinson [28], amounts to considering the
following bond invasion potential,

Qb(x) = 2γ

rb
− (Pg − Pl(x)) (18)

where rb is the radius of the bond (throughout this paper a
perfectly wetting liquid is assumed), x is a position vector,
Pg the total pressure in the gas phase, which is assumed to
be constant and Pl is the pressure in the liquid phase. The
drying algorithm is identical to the one listed above except
that step 2 now reads: the bond connected to the already
invaded region which has the lowest invasion potential is
identified for each cluster.

The additional problem is to determine Pl at each step
of invasion. When gravity effects are important and viscous
effects can be disregarded, the liquid pressure (Pl) distribu-
tion is hydrostatic and therefore known analytically. When
viscous effects are to be taken into account, the pressure
in the liquid phase must be determined numerically. The
method [29] is similar to that presented in the previous
section, Eqs. (6)–(8).

The influence of gravity has been studied by Laurindo and
Prat [26] and Prat and Bouleux [18]. Two main situations
can be distinguished. When the open surface of network is
the top surface, gravity acts as a stabilising force. This leads
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Fig. 3. Liquid–gas interface within a cubic network at three stages of
drying. The open surface is the (hidden) right-hand surface in the figure
(adapted from [27]). Viscous and gravity effects are negligible in this
simulation.

to the formation of drying front as shown in Fig. 4a. When
the open surface is the bottom surface, gravity acts as a
destabilising force. This leads to the formation of a single
branch in a first step of drying as depicted in Fig. 4b.

As first noted by Shaw [23], viscous effects are stabilising.
Thus, drying fronts resembling gravity stabilised fronts are
expected. Drying fronts stabilised by viscosity were studied
by Shaw [23], Tsimpanogiannis et al. [17] and Prat and
Bouleux [18].

4.3. Phase diagram

The pattern to be observed in a given experiment can be
predicted by comparing the length L of the sample with
the characteristic width Lcap of the “viscous” front and the
characteristic width Lg of the “gravity” front. Estimates of
Lg and Lcap as functions of the various parameters control-
ling drying are derived in [26] or [18] using macroscopic
concepts,

Lg

r̄
≈ B−1 (19)

where B is the Bond number defined here as B−1 =
2γ cos θ/r̄2ρLg (the Bond number describes the relative
importance of gravity over capillary forces). γ is the surface
tension, θ the wetting angle and r̄ is an average pore size.
ρL is the liquid density and g the acceleration of gravity.

Lcap

r̄
≈ k

r̄2
Ca−1 (20)

where k is the porous medium permeability. Ca is the cap-
illary number, which characterises the competition between
the viscous and the capillary forces. Ca is defined by
Ca−1 = 2γ cos θ/µLv, where v is a characteristic liquid
filtration velocity and µL the liquid dynamic viscosity. v
is identified with the filtration velocity at the onset of the
process. Under these circumstances, one may define v as

v = e

ρL
(21)

where e is the evaporation flux density at the open surface
of medium.

When Lcap and Lg are greater than L, the system is too
small for “feeling” the influence of gravity or viscosity. The
process is dominated by capillarity and a capillary fingering
pattern (Fig. 2b or Fig. 3) is expected. When Lcap or Lg is
smaller than L, a front is expected (in this section, gravity
destabilising cases are not considered). As under standard
constant external drying conditions e decreases during the
process, Lcap progressively increases. Therefore, in some
cases, one may have Lcap < L and therefore a viscous
front at the beginning of the process whereas later Lcap may
become larger than L, which corresponds to a capillarity
dominated regime. The various patterns that can be expected
are summarised in Fig. 5.

4.4. Dry patch phenomenon

It is also interesting to observe that the phenomenon
of dry and wet patches is captured by the pore network
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Fig. 4. (a) Liquid–gas interface in a cubic network when gravity acts as a stabilising force. There are three main zones. A dry zone near the open (top)
surface. A liquid zone occupying the lower part of network. A (two-phase) front region in between where both gas and liquid phases are macroscopically
continuous (in 3D). (b) Liquid–gas interface in a cubic network when gravity acts as a destabilising force. There are three main steps as described in
[26]. This figure corresponds to the first step which is characterised by a single branch growing upward. The open surface where evaporation takes place
is the bottom surface.

model as shown in Fig. 6. In the context of the present
model, dry patches are a consequence of an invasion
process dominated by capillarity. It is perhaps worth
mentioning that, in our model, the porous structure is
macroscopically homogeneous. Naturally, large scale struc-
tural heterogeneities (pore size correlation, variation of
local porosity), that may be present in a real system,
should certainly contribute to the formation of dry patches.
However, our result clearly show that large scale struc-
tural heterogeneities are not necessary to observe dry
patches.

4.5. Drying rates

From a practical standpoint, prediction of drying rates is
certainly the most important objective of a drying model.
Comparisons between experiments on two-dimensional
etched networks and simulations based on the pore network
model described above were reported in [30]. The agree-
ment was only qualitative. The drying rates predicted by
the simulations were systematically lower than measured.
This is due to roughness and corner film flows, a transport
mechanism in liquid phase which is not incorporated in
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Fig. 5. Drying phase diagram (gravity destabilising regimes are not considered).

the simulations. A schematic of film flows in a bond of
rectangular cross-section is shown in Fig. 7.

Although film flows need to be incorporated in the model
for quantitative predictions, it is interesting to note that the
present version of the model is qualitatively consistent with

Fig. 6. Occurrence of dry and wet patches at the open surface of network. Liquid in dark gray, gas in light gray. This result has been obtained by
simulation over a 51 × 51 × 51 network (adapted from [27]).

the classic description of convective drying in three peri-
ods first proposed by Krisher [8]. In particular, the model
captures the constant rate period (CRP), which is perhaps
the most puzzling feature of drying of capillary porous me-
dia. Fig. 8 shows the drying curve obtained by simulation
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Fig. 7. Schematic of liquid film flows in corners and along the pore walls in a duct whose bulk has been invaded by the gas phase. These flows are due
to secondary capillary effects.

over a 51 × 51 × 51 network as reported in [27]. Gravity
and viscous effects were negligible in this simulation. It is
perhaps worth pointing out that the CRP can be captured
with three-dimensional network only. The drying-curve for
two-dimensional network does not show a significant CRP.
This is due to trapping which is much more effective in
two-dimensions (in others terms, the fact that, in three di-
mensions, the liquid phase remains connected over distance
of the order of the sample size during a significant part of
drying is an essential feature here). More detail can be found
in [27].

4.6. Evaporation of a binary liquid

A pore network model of evaporation of a binary liquid
mixture into a ternary gas phase was developed by Freitas
and Prat [31]. The system considered was a two-dimensional
network initially saturated with a 2-propanol water mix-
ture that evaporated into air at a moderate temperature. The
model was applied to study the influence of surface tension
gradients induced by composition variations of the liquid
on the phase distribution within a capillary porous medium.
The numerical simulations showed that the surface tension

Fig. 8. Drying curve obtained by numerical simulation over a 51 × 51 × 51 pore network. Constant external convective drying conditions are imposed.
Gravity and viscous effects are negligible compared to capillary effects. The drying rate is normalised by the drying rate at t = 0 (adapted from [27]).

gradients led to the accumulation of liquid near the open
edge of the network. This surface tension gradient effect
was only significant for weakly disordered porous media. In
this case, the results indicate that patterns of the destabilis-
ing gravity type can be expected. These results are consis-
tent with experimental results available in the literature as
discussed in de Freitas and Prat [31].

4.7. Influence of heat transfer

A pore network model of drying including heat transfer
modelling has been developed by Plourde and Prat [32].
The modelling of heat transfer is performed over a finer
network than the pore network in order to model heat trans-
fer in the solid phase. The results indicate effects of surface
tension variation induced by temperature variations that are
analogous to those induced by the composition variations
mentioned in the previous paragraph. Depending on the ori-
entation of temperature gradients, destabilised invasion or
stabilised invasion patterns are obtained when the disorder
of porous medium is sufficiently low. Others examples of
pore network models including liquid–vapor phase change
and heat transfer can be found in [33,34].
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5. Open problems

Although important developments have been made in the
field of pore network modelling of drying for about 10 years,
there is still a lot to do. Film flows must be taken into account
at the REV scale as well as at the product scale. In principle,
this does not pose any particular problem, at least under
isothermal conditions. Here again, one can rely on what has
been done in the related domain of immiscible displacements
in porous media, see for instance [35]. In the spirit of the
work of Nowicki et al. [15], it would be interesting to study
the behaviour of the effective parameters from simulations
on three-dimensional networks. As mentioned before, a first
pore network model of drying including heat transfer has
been developed [32]. This model does not take into account
film flows. Modelling of film flows in the presence of heat
transfer is to be done.

At the product scale, the models described in the present
paper are based on the rule that only one bond is invaded at
each step of invasion. This is consistent with the assumption
of “slow” drying. For faster drying rates, displacements can
occur in more than one pore, as observed in the experiments
of Tsimpanogiannis et al. [17]. Although the influence of
this effect on the average behaviours is still unclear, it would
be better to incorporate this effect in the model. The Kelvin
effect, Eq. (12), was taken into account by Nowicki et al.
but not in the models at the product scale. It would be in-
teresting to assess the influence of this effect through pore
network simulations. An important issue concerns the rela-
tively simple structure of the pore networks used in all the
simulations discussed in the present paper. This structure
is suitable for capillary porous materials showing a narrow
pore (bond) size distribution. Network models for materials
having a broad pore-size distributions have been proposed
in the literature, see for instance [36]. It would be interesting
to model drying over this type of network.

In this review, we mainly concentrated on pore network
models. We have indicated that the suitable framework for
analysing the results was percolation theory and its variants
(invasion percolation, invasion percolation in a gradient).
There are also fundamental issues associated with these the-
ories that would deserve to be explored by statistical stud-
ies based on pore network simulations (in the spirit of the
works of Tsimpanogiannis et al. [17] and Prat and Bouleux
[18]).

6. Conclusions

The results recalled in this paper show that the recent
developments in network modelling of drying have led
to significant advances. Coupled with percolation theories
they offer a consistent framework for studying drying. They
represent one interesting alternative for studying problems
that cannot be handled by continuum approaches. They also
offer a possibility for predicting the effective parameters of

continuum models when these models can be considered as
valid. In our opinion, new advances of both a scientific and
practical nature can be expected to occur in the next future
thanks to network models.
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